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Abstract 
 

The uncertainties associated with climate-change projections for California are unlikely to 
disappear any time soon, and yet important long-term decisions will be needed to 
accommodate those potential changes. Projection uncertainties have typically been addressed 
by analysis of a few scenarios, chosen based on availability or to capture the extreme cases 
among available projections. However, by focusing on more common projections rather than 
the most extreme projections (using a new resampling method), new insights into current 
projections emerge: (1) uncertainties associated with future emissions are comparable with the 
differences among models, so that neither source of uncertainties should be neglected or 
underrepresented; (2) twenty-first century temperature projections spread more, overall, than 
do precipitation scenarios; (3) projections of extremely wet futures for California are true 
outliers among current projections; and (4) current projections that are warmest tend, overall, to 
yield a moderately drier California, while the cooler projections yield a somewhat wetter future. 
The resampling approach applied in this paper also provides a natural opportunity to 
objectively incorporate measures of model skill and the likelihoods of various emission 
scenarios into future assessments. 
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1.0 Introduction 
Projections of climate change due to increasing greenhouse-gas concentrations in the twenty-
first century are inevitably uncertain because of the chaotic nature of the global climate system, 
because of models imperfections, and because of uncertainties regarding how society’s 
emissions of greenhouse gases and other atmospheric contaminants will proceed in the future. 
In the midst of our uncertainties, however, current (climate model) projections exhibit some key 
commonalities that demand near-term attention from California’s resource-management 
communities: (1) Even the most benign of the projected climate changes are sufficient to 
significantly alter the California’s landscape, hydrology, and land and water resources, and 
(2) those alterations are likely to become significant within roughly the next 25 years (Barnett et 
al. 2004; Dettinger et al. 2004; van Rheenen et al. 2004). Thus, California—like the rest of 
society—is faced with the prospect of an uncertain array of climate changes that may be 
expected to develop within time frames that are comparable to the planning and 
implementation horizons of any major resource-management decisions that might respond to 
those changes. 

To date, technical responses to this dilemma primarily have involved development and 
preliminary applications of tools for assessing the potential climate-change impacts and the 
efficacy of various possible adaptation or accommodation strategies. In part, this response has 
been motivated by the assumption that projection uncertainties will be reduced sufficiently in 
the near term to justify putting off more intensive and detailed assessments until later. 
However, the projected changes include important near-term impacts, and the slim likelihood 
that projection uncertainties will decline precipitously in the near term may not justify 
prevarication. For example, two highly respected climate modelers, David Randall and Akio 
Arakawa, recently opined that “a sober assessment suggests that with current approaches the 
cloud parameterization problem [the most vexing aspect of climate and climate-change 
modeling at present] will not be ‘solved’ in any of our lifetimes” (Randall et al. 2003). Thus, we 
should not depend on large reductions of projection uncertainties in time to make needed initial 
responses to the changing climate, and new strategies for more completely accommodating 
projection uncertainties are needed.  

The development of the required uncertainty-based strategies will be challenging, but will offer 
the opportunity to focus more on the likelihoods, rather than just the uncertainties, of climate 
change. That is, as Myles Allen (2003) has recently commented, “Climate modelers need to start 
saying what changes can be ruled out as unlikely, rather than simply ruled in as possible.” 
Indeed, it is perhaps time for California analysts to focus on what is more likely rather than on 
what is just possible.  If this distinction can be determined, accommodation strategies and 
impact assessments will become more focused and practical. 

This paper is an attempt to illustrate some of the insights that become possible as we progress 
from the recent relatively narrow emphasis on a few outlying projections to approaches that 
characterize the overall distributions of available climate-change projections. Our view of the 
future climate is clouded by uncertainties from model imperfections and uncertainties about 
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how rapidly greenhouse gases will accumulate in the atmosphere, together with the naturally 
unpredictable variations of the global climate system. Preliminary depictions of how these 
uncertainties cloud projections of California’s future climate are already possible, as 
demonstrated here using an existing multiple-model, multiple-emissions collection of climate-
change projections. The resulting analysis suggests that, among currently available projections, 
California would most likely experience about +5ºC warming, with relatively little precipitation 
change. The sign of projected precipitation changes appears to depend on whether one 
considers one of the warmer or cooler projections, which generally yield modestly drier or 
modestly wetter outcomes, respectively. Thus, even this preliminary step toward characterizing 
the likelihoods of various climate changes provides new insights into the available projections. 
The approach used here also offers new opportunities for objectively weighting the various 
projections to improve our understanding still further.  

 

2.0 Problem 
The most common approach for analyzing climate-prediction uncertainties is analysis of 
ensembles of predictions, wherein each prediction differs from the others due to some 
prescribed model condition. Ensembles of climate projections often are used to describe 
prediction uncertainties associated with model constructions, initial conditions, and future 
emissions of greenhouse gases into the global atmosphere. In weather- and climate-prediction 
applications, several studies have argued that ensemble means are better predictors than are 
any individual members of the contributing ensembles (e.g., Krishnamurti et al. 2000; 
Richardson 2001; Zhu et al. 2002), and this finding may eventually be found to extend also to 
climate-change projections. Thus, climate-change ensemble means (or approximations thereof) 
might reasonably be analyzed, although we have heard of few uses of even this strategy. 
Rather, the more common strategy, to date, has been to analyze one or two example scenarios 
(often determined more by logistics and availability than by their representativeness).  
 
More determined efforts are responding to today’s limited ensembles of available projections, 
and to the burdens imposed on some impact studies by each additional ensemble member, by 
trying to, at least, “bookend” the climate-change possibilities by analyzing only the upper and 
lower bounds of the available projections (e.g., recent reports such as Global Climate Change and 
California: Potential Implications for Ecosystems, Health, and the Economy, at 
www.energy.ca.gov/pier/ reports/500-03-058cf.html and Climate Warming & California’s Water 
Future, at http://cee.engr.ucdavis.edu/faculty/lund/CALVIN/ ReportCEC/CECReport2003.pdf, 
as well as the ongoing coordinated efforts by the Joint Department of Water Resources/U.S. 
Bureau of Reclamation Climate Change Work Team in California). Such approaches ultimately 
say little about the true uncertainties facing scientists and decision makers. Neither the 
ensemble means, nor the most extreme predictions (often true outliers), describe the real scatter 
among current projections.  



 

 3

 
Ensembles of predictions also presumably contain information about the overall likelihoods of 
various scenarios and about higher-order statistics of the projection scatter. In reality, the 
ensemble scatter is more descriptive of models and emissions than of real-world climate 
changes under multiple stresses and processes, but the ensemble statistics remain our best (and 
essentially, only available) avenue for quantitatively representing overall climate-change 
uncertainties in the immediate future. 
 
Ideally, then, strategies for interpreting and using climate-change projections would be 
informed by a more complete synthesis of available ensembles. Although “majority rules” does 
not apply to climate-change projections, it is nonetheless questionable whether the common 
focus of impact studies on outliers (the least commonly projected outcomes) is at all a more 
useful strategy. Instead, it would be more useful and intelligible to plan and work from a more 
complete depiction of the scatter in current projection ensembles. 
 
We will continue to be uncertain as to the true probability distribution of future climate, 
viewing the future as we do mostly through the lenses of imperfect and continually evolving 
climate models and emissions scenarios, but approaches that really quantify the scatter among 
current models and emissions scenarios will provide more complete understanding of the 
commonalities and contrasts among present-day projections than is being brought to bear in 
most studies and decision making at present. 
 
3.0 Providing Ensemble Projection Distribution Functions (pdfs) 
The typical ensemble, whether numbering tens of members or a very few, offers the analyst and 
decisionmaker a “spaghetti” of simulated futures (e.g., as shown later in Fig. 1). This 
representation of an ensemble is useful and simple, giving a qualitative sense of scatter, 
commonalities, and trends. Done correctly, the spaghetti provides a sense of how trends 
compare with shorter term natural variations in the systems considered.  
 
However, our eyes are naturally drawn to outliers out of proportion to their significance, and 
clusters in the morass may receive less consideration than is their due. A more even-handed 
and quantitative view of the spaghetti of a typical ensemble requires estimation of the 
probability distribution from which the ensemble was sampled. In reality, since we are working 
with imperfect models and forcings, the distribution that our ensembles are sampled from are 
not the same as the distribution of future real-world climates. Thus, we are only able to estimate 
the distribution of projections of future climates and cannot directly estimate the actual 
probabilities of various future climates. We can only estimate (what we will refer to as) 
projection distribution functions (pdfs) as the best available approximations of the true climate-
change probability distributions. 
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If the ensemble includes many members, then characterizing the ensemble trends and scatter 
can be as simple as ranking the predictions for each time and binning the results to directly 
form histograms or crude model-scenario pdfs. Even if the pdfs so estimated are crude, they can 
provide useful measures for comparing projections to observations and can provide a useful 
basis for comparing different ensembles (e.g., in the weather-prediction sense) (Toth et al. 2003).  
 
When the number of ensemble members is smaller, however, developing even a rough estimate 
of the pdfs involves assumptions about the character of the projection uncertainties sampled by 
the ensemble. One approach is to sort and rank the ensemble predictions, use them as mileposts 
of the pdf (e.g., the median projection value at a given lead time marks the median in the pdf), 
and then smooth algebraically to fill in interpolated values. Alternatively, one can attribute 
error bars of some weight and shape to each ensemble member and then essentially sum the 
error bars from all the ensemble members to arrive at the overall ensemble pdf (but then 
important assumptions need to be made regarding the growth rate of the error bars for the 
individual ensemble members). Both of these approaches have the advantage that they are 
simple, but have the disadvantage that they require subjective choices or assumptions by the 
analyst. 
 
In this paper, a third alternative is applied that, in its simplest form, has no subjectively tunable 
parameters. However, because the particular method used to estimate the pdfs is probably less 
important than the effect of viewing pdfs (rather than spaghetti), details of this particular 
alternative are left to an Appendix. The method requires no tunable parameters, because it 
characterizes the ensemble spread by a data-adaptive principal components analysis and then 
resamples the independent components obtained from that analysis as often as necessary to 
provide a smooth pdf. Using the orthogonality properties that are designed into principal 
components analysis (PCA), the resampling method provides an almost unlimited number of 
other realizations that are statistically independent of each other but that retain the essential 
characteristics of the ensemble members, including evolving ensemble means and standard 
deviations and all the lag and intervariable correlations. The method readily handles ensembles 
that bifurcate along two or more trajectories and handles heavy-tailed distributions as a matter 
of course.  
 
4.0 Climate-Change Distributions for Northern California 
As an illustration of the difference between describing climate-change ensembles as pdfs and as 
spaghetti, the component-resampling procedure described in the Appendix is applied here to 
an ensemble of climate-change projections of twenty-first century (2001–2099) climate. The 
ensemble considered here was compiled from six climate models, each simulating responses to 
each of three specified greenhouse-gas-plus-sulfate-aerosols emissions scenarios (Fig. 1). The 
ensemble includes three projections each by the U.S. PCM, Canadian CCCM, German 
ECHAM4, British HadCM3, Japanese NIES, and Australian CSIRO coupled ocean-atmosphere 
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global climate models; the emissions scenarios are the A2, B2, and IS92a SRES scenarios 
(Houghton et al. 2001), which represent projections of relatively rapid, intermediate, and 
moderate rates of twenty-first century emissions increases, respectively. 
 
By considering this even balancing of models and scenarios, no model or scenario is 
emphasized over the others. This even-handed treatment of the models and scenarios was 
valued here sufficiently so that other models that did not have all the scenarios available, and 
scenarios that have not been run in all the models, were excluded from the present analysis. 
Ideally, in the absence of known deficiencies in one or another of the ensemble members, the 
climate-change pdfs should reflect, in an even-handed way, the combination of uncertainties 
associated with models and the uncertainties associated with future emissions. However, not all 
models (or scenarios) are equally skillful at reproducing or projecting climate variations. A 
simple extension of the resampling procedure to allow an uneven treatment of the models (i.e., 
to weight the most skillful models the most and the least skillful models the least) is outlined at 
the end of this section. 
 
The 18 ninety-nine-year-long (future) climate projections of Northern California climate change 
compiled in Figure 1 all share rapid warming tendencies after about 1970 and, by about 2020, 
temperatures have all warmed beyond most of the background of historical temperature 
variability. The general spread of temperatures by 2001 is from +2.5°C to +9°C. Notably, the 
scatter among scenarios is not substantially larger or different than the scatter among models 
considered here. Emission scenarios (e.g., the A1 and B1 scenarios of Houghton et al. 2001) that 
diverge even more than the scenarios analyzed here might be different enough to spread the 
projections considerably more. Projections of precipitation in the twenty-first century are less 
unanimous, with some projections becoming much wetter (the wettest projections are both from 
the Canadian model) and some drier. Plotted in this way, the eye naturally focuses on the 
outliers in the ensemble, and many studies have been constructed to address the bounds of such 
projection ensembles, rather than exploring the more common results. 
 
To improve visualization, interpretation, and—for some applications—the usefulness of this 
ensemble, the 18 projections of temperature and precipitation were resampled according to the 
procedure described in the Appendix. In this application of the component-resampling 
procedure, mixing of the ensemble loading patterns was restricted to only allow projections by 
a single model to be intermixed. This restriction prevents the possibly inappropriate mixing of 
incompatible components from the projections by very different climate models. The restriction 
is easily accomplished by beginning each resampling cycle with the choice of one of the models 
at random, followed by random sampling among only the several amplitude series for that 
model, to obtain the new realization. With this restriction, the number of independent 
combinations is about 6 x 320 or about 1010, certainly a sufficient number for applications. 
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Figure 1. Ensembles of historical and future temperature and precipitation projections from six 
coupled ocean-atmosphere general-circulation models, each forced by historical scenarios, and then—
in the twenty-first  century—the A2, B2, and IS92a SRES emissions scenarios (Houghton et al. 2001). 

The dashed background of curves shows annual deviations from the 1951–1980 simulated means; 
whereas, heavy curves show 7-year moving averages. Projections are for a single model grid cell 

(ranging from 2.5ºC to 5.5ºC spatial resolution, depending on model) from each model centered over 
northern California. 

 
Figure 2 shows the results of a 20,000-member resampling of the 18-member climate-change 
projection ensemble. The PCA applied in the first step of the procedure was extended so that 
temperature and precipitation changes were analyzed and resampled together. The pdfs shown 
are thus joint pdfs of temperature and precipitation. Consequently, for example, if a particular 
model has a tendency for excursions of temperature and precipitation to occur simultaneously, 
the component-resampled realizations will emulate those linkages. 
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Early in the twenty-first century, the projections are closely clustered, somewhat warmer, and 
somewhat drier on average than the 1951–1980 climatology (because, even by 2000, greenhouse 
forcings are larger than during that climatology period) (Dai et al. 2001). The ensembles spread 
over the course of the twenty-first century, until by 2099, temperature-change projections range 
(mostly) from about +2°C to +7°C, and precipitation-change projections range from about –30 to 
+25 cm/yr, with two outlying exceptions. The probability distributions shown are reflections of 
the joint variations of temperature and precipitation so that if, for example, the projections that 
were warmest overall tended also to be the wettest, and vice versa for cooler and drier models, 
the component-resampled realizations would maintain these tendencies faithfully. 
 

 

Figure 2. Distributions of original and component-resampled projections of annual twenty-first 
century surface-air temperatures and precipitation changes for a grid cell over Northern California 

(40ºN 120ºW), from the ensemble of projections shown in Fig. 1. Red circles show the raw ensemble 
projections; contours and shading show resampled joint temperature-precipitation probabilities, with 

a contour interval of 0.025. 
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The smoothing that is provided by the component-resampling procedure is illustrated by the 
sequences of time slices through the projection pdfs (in Figure 2) shown in Figure 3. The 
temperature-change pdfs spread and trend toward warmer conditions as the twenty-first 
century climate evolves. The spread is mostly a result of divergence between the models and 
divergence of the emissions scenarios, with relatively little contribution by increasing 
interannual variability within any given model’s projections. Notice that, by as early as 2025, 
realizations that are cooler than the 1951–1980 “normal” are exceedingly rare. 
 
 

 

Figure 3. Time slices of the distributions of resampled ensemble realizations from Figure 2. 

In contrast, the precipitation-change pdfs translate and spread much less than do the 
temperature pdfs (Fig. 3). Overall, the component-resampled realizations (as in the raw 
projections) most commonly exhibit only modest twenty-first century precipitation changes 
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over California. The modes of the smoothed (resampled) pdfs in Fig. 3 trend toward drier 
conditions, which is much more difficult to perceive in the scattered red dots of Fig. 2 or in a 
corresponding “spaghetti” plot overlaying each ensemble member’s projected time series. Thus, 
although no new information is introduced by the component-resampling procedure, its 
smoothing can nonetheless be very informative.  
 
The general rate of expansion of the ensemble spread around this mean precipitation-change 
behavior is small, except for a distinct heavy tail spread towards substantially wetter 
conditions. That heavy tail spread reflects the contributions to the ensemble from the Canadian 
model’s projections, the two outlying much wetter projections in the original 18-member 
ensemble. That model, under each of the emissions scenarios, evolves towards a much wetter 
California, as part of its tendency (unique among the models compiled here) to respond to 
increasing greenhouse forcing with enhanced El Niño conditions.  
 
The component-resampling procedure applied here generates realizations of temperature and 
precipitation change that are jointly distributed. Thus, it is also possible to evaluate tendencies 
for correlated temperature and precipitation changes. The joint probabilities of precipitation 
and temperature change among the 20,000 resampled realizations is mapped in Figure 4 for 
several years during the twenty-first century. Notice that, as indicated previously, temperatures 
generally warm and precipitation changes little overall. However, the joint probability 
distribution is also somewhat bimodal in ways not obvious from either the unvariate pdfs or the 
spaghetti plots. The joint probabilities indicate that the warmest climate-change projections tend 
to also bring drier conditions; the cooler projections tend to be slightly wetter, most obviously 
by 2050. By 2100, when all the scenarios have warmed considerably, the same tendency still 
persists, but the warmer-drier scenarios dominate overall. 
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Figure 4. Time slices of the joint temperature-precipitation distributions of resampled ensemble 
realizations from Figure 2. Circles indicate values in the original 18-member ensemble of projections. 

 
The component-resampled realizations of the projections also provide a ready supply of 
examples of coordinated temperature and precipitation changes for use in evaluating climate-
change impacts. As a simple example, the 20,000 temperature-and-precipitation-change 
realizations generated for Figures 2 and 3 were introduced to the streamflow amount and 
timing response surfaces mapped by Jeton et al. (1996) for the North Fork American River in the 
central Sierra Nevada. Those response surfaces (Figs. 16b and 17c in Jeton et al. 1996) show the 
mean simulated changes in annual streamflow amounts and in the median-flow dates (days of 
year by which half the year’s flow is past), in response to 100-year-long synthetic climate series 
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with arbitrarily specified mean-climate changes ranging from cooler to warmer, and from drier 
to wetter. The mean streamflow changes mapped by Jeton et al. (1996)—corresponding to the 
temperature and precipitation changes in each of the 20,000 resampled ensemble realizations 
(from each of the time slices in Fig. 3)—were accumulated, and the resulting pdfs of streamflow 
amount and timing are shown in Figure 5. 
 
The pdfs of annual streamflow changes in Fig. 5 are similar to the pdfs of precipitation change 
in Fig. 3, reflecting the strong control that precipitation change exerts on total streamflow 
amount, as well as the nearly complete buffering of streamflow amounts against responses to 
temperature changes, discussed at length by Jeton et al. (1996). By the end of the twenty-first 
century, streamflow amounts are significantly biased towards a drier mean and mode, although 
the much wetter Canadian climate models ensures a heavy tail of significantly wetter 
streamflow-amount realizations.  
 
The corresponding projections of streamflow timing (Fig. 5, bottom panel) mostly reflect the 
warmer temperatures projected by all the models, although concurrent precipitation changes in 
the realizations couple nonlinearly with the temperature effects in the Jeton et al. (1996) 
response surfaces to yield much broader and more multimodal timing distributions. Some of 
the multimodal character of the timing pdfs presumably derives from the bimodal character of 
the joint temperature-precipitation distributions (Fig. 4). By 2025, years with earlier than normal  
median-flow dates (1951–1980) are all but eliminated among the resampling-driven realizations. 
By the end of the twnety-first century, the most common median-flow date projections are over 
a month earlier than the 1951–1980 norms; see Stewart et al. (2004) for a more comprehensive 
and geographically far-reaching discussion of this phenomenon. 

 
Now, consider the differences between the messages and information content of Fig. 1 and 
Fig. 3 (or 5). How attractive does the bookending strategy look, once the pdfs have been 
examined? From the spaghetti of Fig. 1, we concluded mostly that projected temperature 
changes are most unanimous than are the projections of precipitation change, and that very wet 
futures are a significant threat (or opportunity).  
 
The pdfs, in contrast, suggest that the envelope of (most likely) temperature projections spreads 
more through time than does the envelope of precipitation changes. The less-than-obvious 
tendency for the mode of precipitation changes to drift towards drier conditions is also much 
clearer in the pdfs. In fact, no new information has been added to the ensemble by the 
component-resampling procedure, but our understanding of the potentialities that the ensemble 
represents is arguably much clearer. In addition to this clarification, the users of such an 
ensemble have much more freedom to select their own levels of risk aversion when ensemble  
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Figure 5. Distributions of annual streamflow amounts and median-flow dates (i.e., date by which half 
of a year’s flow is past) in response to 20,000 resampled climate-change projections (illustrated in Fig. 

3). Streamflow responses were estimated from response surfaces mapped in Jeton et al. (1996). 

results are quantified by pdfs rather than by spaghetti. That freedom is needed, because risk is 
not simply the likelihood of an adverse impact; rather, risk is essentially a product of likelihood 
and cost of that impact. Consequently, in applications, each newly discovered potential 
impactbrings with it its own unique requirements from the projection ensembles. A more pdf-
centric approach is the more proactive approach. 
 
Although the resampling procedure used in this section added no real information to the 
ensembles, the procedure can readily be extended to add crucial information in clear and 
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helpful ways. For example, the component-resampling procedure used above treated each 
model’s projections as equally likely and each emissions scenario as equally likely.  
 
However, the procedure can be modified to reflect any assumed weighting of the various 
models and scenarios. For example, if the accuracies of each model were quantitatively indexed 
by a measure of the likelihood that its projections were the most accurate (among all the models 
considered), then that index could be used to weight the fraction of samples that each model 
would contribute to the resampling procedure. This would mean that the most accurate models 
would contribute the most to the resampled distributions, and the least accurate models would 
contribute the least. Similarly, if the likelihood of emissions scenarios could likewise be ranked 
quantitatively, then the resampling probabilities could be adjusted to reflect those outcomes as 
well. This opportunity to hone the pdfs generated from the 18-member climate-change 
ensemble considered is an important motivation for our ongoing efforts to characterize the 
historical accuracies of the models with respect to a combination of local and global simulation-
skill scores. 
 
5.0 Summary 
In current climate-change applications, the availability of ensembles of predictions that contain 
very large numbers of members and ensembles that evenly mix model uncertainties with 
emissions uncertainties are rare. The availability of such ensembles would substantially ease 
statistical analyses and interpretations, and could be used to judge simulation skill. This study 
describes and demonstrates the clarifications that are possible when projection-distribution 
functions can be estimated quantitatively by resampling much smaller ensembles.  
 
A pdf, of the simple form used here, simply provides more information of direct relevance to 
resource managers, engineers, utilities, farmers, and others, and a clearer depiction of central 
tendencies and the risks at the extremes than does the typical spaghetti plot. Although little or 
no actual new information was introduced by the component-resampling procedure in the 
example shown here, it already provides an objective method for developing reproducible 
estimates of detailed distribution functions from small ensembles that clarifies the implications 
of an available climate-change ensemble considerably. Information describing the historical 
skills of contributing models, and probabilities of various forcing scenarios, can readily be 
added to improve the uncertainty estimates. The result is a bridge between subjective 
interpretations of spaghetti plots of small ensembles and the kinds of visualizations and 
calculations that could be accomplished with much larger ensembles. Thus, the methods and 
ensemble explored here suggest that: 
 

1. Depicting climate-change ensembles in terms of the density distributions in the 
projection ensembles can provide new insights into the projections that are not obvious 
or directly measured in the more common spaghetti diagrams/listings—even when no 
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new information is added in the process of estimating those distributions. In the 
example presented here, spaghetti diagrams had fueled the idea that precipitation 
projections were more scattered than temperatures, and that a very wet California was a 
strong possibility. An objective depiction of the distribution of projections indicated 
instead that the ensemble distribution of temperature projections spreads more (in 
relative terms) than does the corresponding precipitation distribution, and that the wet 
projections are true outliers with much smaller changes in precipitation being much 
more common (likely) among current projections. 

 
2. The process of estimating projection distributions from the ensemble spaghetti offers a 

natural opportunity for actually adding information to the interpretation of ensembles. 
In the resampling procedure used here, skill scores for the models and any outside 
information about the relative likelihoods of various emissions scenarios can easily be 
used to condition the resampling probabilities, so that the resulting estimates of 
projection probabilities more nearly reflect the strengths and weaknesses of each 
contributing ensemble member. Such weighting is not an option unless the step from 
spaghetti to distribution is taken. 

 
3. Uncertainties from both model differences and emissions scenarios cloud our view of 

the future climate. The even-handed mixture of projections from both different models 
and different forcings is an ideal that should be pursued as much as possible, and that 
should be brought to California applications at the earliest feasible date. 

 
For the future, besides working to develop and use model skill scores in the resampling 
procedure, it is worth noting that the procedure demonstrated here is currently only suited for 
use with a handful of projected variables. Estimating the joint pdfs of simultaneous projections 
of many variables or many locations will require modifications and extensions of the procedure. 
However, the benefits of replacing ensemble spaghetti with projection distributions (densities) 
make that extension a worthwhile goal. 
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Appendix 

Component-Resampling Method 

 
Consider an ensemble of n forecasts of, say, temperature at a given model grid cell, each m days 
(or years) long, and each containing elements {xij, i=1, m} where j indicates the ensemble 
member. A PCA of the n forecast vectors, with all expectations calculated across the ensemble 
members, will decompose the original ensemble into m loading patterns {ei, i=1, m} and m 
corresponding sets of amplitudes {pij, j=1, n}. By construction, the loading patterns (like 
empirical orthogonal functions) and the amplitudes (like principal component series) both form 
orthogonal bases for describing the original ensemble. The amplitudes measure the projections 
of the original ensemble members onto the set of independent normal modes of the variations 
(the loading patterns), and, by construction, the amplitude of one of the ensemble members 
projected onto a particular loading pattern is statistically independent of its projection onto any 
of the others. The k-th original (properly standardized) ensemble member can be recovered 
completely by: 
 

            j=n 

  xik = Σ   eij  pjk 

           j=1 

 

Another prediction vector that is indistinguishable from the original ensemble elements, to 
second order, can be obtained by scrambling the amplitudes (picking the k indices in equation 
(1) at random, with replacement, from k=1, n, at each step in the summation). Because the 
amplitudes are independent from loading pattern to loading pattern, statistically the first and 
second-order statistics do not depend on which one is chosen at each step. 
 
The procedure is as follows: 
 

1. Calculate the ensemble mean values µi of xij at each time i, with expectation taken across 
the ensemble: 

 

µi = Σ  xij /n 

        j 
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and subtract these means from the forecast vectors to obtain an ensemble of centered 
(zero-mean at each lead time) forecast vectors. Any mean or trend shared by all the 
ensemble members is removed by this step. When the ensemble is resampled later, this 
temporally varying ensemble mean can readily be added again. 

 
2. Calculate the ensemble standard deviations σi of the centered forecasts at each time i, 

again with expectation taken across the ensemble, and divide the centered forecast 
vectors at each lead time by the corresponding standard deviation to obtain a 
standardized forecast ensemble (zero mean and unit variance at each lead time). This 
ensures that any temporal evolution of the spread of the ensemble is captured and can 
be reintroduced after resampling. Removing the temporally varying standard deviation 
at this point in the analysis ensures that inter-ensemble variations in the early part of the 
forecasts (when the ensemble typically has not spread much) are treated in the same 
detail as those later in the forecasts.  

 
3. Compute the cross correlations of the standardized forecasts at each time and lag, with 

expectations taken across the ensemble. The resulting cross-correlation matrix is m x m, 
and summarizes the covariation of the day-1 forecasts in each ensemble member with 
the day-2, day-3 (and so on) forecasts in the same ensemble member.  

 
4. This cross-correlation matrix is decomposed into loading patterns and their attendant 

amplitude series by a simple PCA. The loading patterns describe the temporal evolution 
of the ensemble members in the most economical form. For example, perhaps most 
ensemble members trend throughout from warmer towards cooler, while a few might 
increase for a while and then decrease like the others. The two behaviors would tend to 
be captured by two distinct loading patterns, and those ensemble members in the former 
category would be weighted more heavily in the former loading pattern; whereas, the 
latter ensemble members would be weighted more heavily on the latter pattern. These 
weights are measured by the respective amplitude series. For a given loading pattern, 
the amplitude series measures the weight (similarity) of each ensemble member in turn 
to that pattern, and a given ensemble member’s amplitude of any of the loading patterns 
is statistically independent of its weight on any other loading pattern. 

 
5. Randomly resample the PCA results to generate as many additional “forecast” 

realizations as necessary. Because the amplitudes for the various loading patterns are, by 
construction, independent of each other, by construction it does not matter which 
ensemble member’s amplitude for a given loading pattern is mixed with which other 
ensemble member’s amplitude for another loading pattern. With m loading patterns, 
each of which can take on any of the n amplitudes, the number of distinct resamples that 
can be constructed is mn; e.g., in a 10-member ensemble of 14-day forecasts, 1410 



 

 A-3

resamples can be generated. If, as in many PCA, only about 20% of the amplitude series 
contributed much variance to the recontructions, the effective candidates for 
independent samples would drop to perhaps 310 or about 60,000 possible independent 
samples, which is still a useful expansion of the apparent size of the ensemble. 

 
6. Having reconstructed a “new” member of the standardized forecast ensemble by 

resampling (in Step 5), rescale the result by the time-varying ensemble standard 
deviations and then add the time-varying ensemble means. By this rescaling, the 
stationary and shared variability are restored, and the large numbers of results can be 
ranked and summarized in detailed histograms to obtain pdfs as fine as desired. 

 
The method ensures that features shared by all members are shared by the component-
resampled ensemble members, that variations shared by subsets of the ensemble members are 
reproduced realistically and in proportion to their occurrence in the original ensemble, and 
even that the noisy (unshared) variations are faithfully captured and reproduced in the 
component-resampled ensemble. Because the method is based on PCA, the component-
resampled ensemble is described mostly in terms of its first and second statistical moments, so 
that the resulting smoothed pdfs tend toward Gaussian shapes; however, that tendency is 
relatively weak. When present, forecast bifurcations should be captured in the PCA loading 
patterns and weighted appropriately (in both amplitude and numbers of participating ensemble 
members) by the corresponding amplitude series. Then, when the amplitude series are 
resampled randomly, both the shapes and relative frequencies of the bifurcations are naturally 
reproduced in a satisfying way. Because of this property of the components that are resampled, 
even while the general divergence attributable to model and scenario differences, along with 
sensitive dependences upon initial conditions, any occasional, temporary confluences of 
ensemble members associated with visits near ghost limit points and cycles (Ghil et al. 2002), 
and in homoclinic orbits (Ghil and Childress 1987), shared by the ensemble members are also 
captured in a natural way.  
 
One way to picture the method is to imagine that the original ensemble has been filtered into a 
large number of narrow and nonoverlapping frequency bands. The result is that an ensemble 
member has power A in the first frequency bin, has power B in the second frequency bin, and so 
on. Another ensemble member would have a different set of powers in each frequency bin. 
Now, assuming that an ensemble’s power in the first frequency bin has little bearing on its 
power in the second, and so on, one can imagine generating new ensemble surrogates with the 
same statistical properties as the original ensemble, by taking the filtrate from one ensemble 
member (at random) from the first frequency bin, adding to it the filtrate from an ensemble 
member (at random) the second bin, and so on, until samples from all the frequency bins have 
been incorporated. The sum of the frequency components constitutes a new time series with 
statistical properties that are derived strictly from the ensemble’s overall power spectrum. For 



 

 A-4

example, if the 10-day periodicities in the ensemble members were most powerful and 8-day 
periodicities notably lacking, the resampling would still yield members with powerful 10-day 
periodicities and weak 8-day periodicities, because the resampling only uses observed values 
from each frequency bin. The present method improves on such a hypothetical frequency-
binned resampling by (1) guaranteeing—by the construction of the PCA decomposition of the 
ensemble members—that the various elements resampled (the loading patterns, which would 
correspond to sine waves of given frequency in the hypothetical) are always independent of 
each other, and (2) allowing more flexibility of loading-pattern shape than is offered by a simple 
frequency-domain approach. 
 


